Chain length determines the folding rates of RNA.
نویسندگان
چکیده
We show that the folding rates (k(F)s) of RNA are determined by N, the number of nucleotides. By assuming that the distribution of free-energy barriers separating the folded and the unfolded states is Gaussian, which follows from central limit theorem arguments and polymer physics concepts, we show that k(F)≈k(0)exp(-αN(0.5)). Remarkably, the theory fits experimental rates spanning over 7 orders of magnitude with k(0)~1.0(μs)(-1). Our finding suggests that the speed limit of RNA folding is ~ 1 μs, [corrected] just as it is in the folding of globular proteins.
منابع مشابه
Contact order revisited: influence of protein size on the folding rate.
Guided by the recent success of empirical model predicting the folding rates of small two-state folding proteins from the relative contact order (CO) of their native structures, by a theoretical model of protein folding that predicts that logarithm of the folding rate decreases with the protein chain length L as L(2/3), and by the finding that the folding rates of multistate folding proteins st...
متن کاملFolding Rate of Protein and RNA Studied from Quantum Folding Theory
Starting from the assumption that the protein and RNA folding is an event of quantum transition between molecular conformations,we deduced a folding rate formula and studied the chain length (torsion number) dependence and temperature dependence of the folding rate. The chain length dependence of the folding rate was tested in 65 two-state proteins and 27 RNA molecules. The success of the compa...
متن کاملQuantitative Relations in Protein and RNA Folding Deduced from Quantum Theory
Quantitative relations in protein and RNA folding are deduced from the quantum folding theory of macromolecules. It includes: deduction of the law on the temperature-dependence of folding rate and its tests on protein dataset; study on the chain-length dependence of the folding rate for a large class of biomolecules; deduction of the statistical relation of folding free energy versus chain-leng...
متن کاملCotranscriptional folding kinetics of ribonucleic acid secondary structures.
We develop a systematic helix-based computational method to predict RNA folding kinetics during transcription. In our method, the transcription is modeled as stepwise process, where each step is the transcription of a nucleotide. For each step, the kinetics algorithm predicts the population kinetics, transition pathways, folding intermediates, and the transcriptional folding products. The foldi...
متن کاملIn vivo translation rates can substantially delay the cotranslational folding of the Escherichia coli cytosolic proteome.
A question of fundamental importance concerning protein folding in vivo is whether the kinetics of translation or the thermodynamics of the ribosome nascent chain (RNC) complex is the major determinant of cotranslational folding behavior. This is because translation rates can reduce the probability of cotranslational folding below that associated with arrested ribosomes, whose behavior is deter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 102 3 شماره
صفحات -
تاریخ انتشار 2012